
AULA 6 • ESTRUTURA DE DADOS

UNITINS • ANÁLISE E DESENVOLVIMENTO DE SISTEMAS • 3º PERÍODO 89

Esperamos que, ao final desta aula, você seja capaz de:

compreender a importância da compressão de dados;

conhecer algoritmos de compressão de dados (freqüência de caracteres,
Huffman e LZW).

Para compreender satisfatoriamente esta aula, é necessário conhecer as
árvores binárias e os tipos de arquivos (estudados nas aulas um e quatro deste
caderno, respectivamente). As árvores binárias são importantes porque uma das
técnicas aqui discutida (algoritmo de Huffman) faz uso de árvores binárias em sua
solução. Além disso, é importante conhecer também os tipos de arquivos, uma
vez que todos os algoritmos apresentados nesta aula fazem uso de arquivos.

Compactar, comprimir, zipar. Eis expressões comuns do jargão da informá-
tica que, provavelmente, já foram usadas por você ao se referir à compressão
de arquivos.

A compressão de dados ou, em inglês, data compression, consiste na utili-
zação de um conjunto de métodos e outros pormenores práticos com o intuito
da redução do espaço armazenado em unidades de memória secundária ou
mesmo primária de um sistema computacional. Um arquivo comprimido terá
seu tamanho reduzido, como saída resultante da aplicação de um algoritmo
de compactação de alguma aplicação, como, por exemplo, gzip, winzip ou
winrar. Essas aplicações também incluem algoritmos de empacotamento, a fim
de permitir que múltiplos arquivos sejam compactados e concatenados dentro de
um único arquivo resultado, aumentando a praticidade do processo.

AULA 6 • A ESTRUTURA DE DRA ADOS

Compressão de dados

AULA 6 • ESTRUTURA DE DADOS

90 3º PERÍODO • ANÁLISE E DESENVOLVIMENTO DE SISTEMAS • UNITINS

A necessidade de compressão de dados é algo comumente relacionado à
vida das pessoas, seja de maneira direta ou indireta. Na internet, a compressão
ajuda a diminuir a quantidade de tráfego na grande rede, aumentando a velo-
cidade de navegação, realização de downloads de arquivos e visualização de
vídeos. Na vida offline, arquivos compactados são preferíveis quando há inte-
resse de armazenamento de maior número de dados possível no menor espaço
de memória secundária disponível, como em pen-drives, memmory cards, discos
rígidos e demais unidades de memória.

Muitos arquivos de extensões famosas, como pdf (textos, e-books), mp3
(áudio, músicas), gif (imagens, fotos), zip (arquivos em geral), mpg (vídeos),
utilizam algoritmos de compactação em suas concepções. Arquivos são seqüên-
cias de bytes, caracteres alfabéticos, numéricos e símbolos imprimíveis ou não. Se
começarmos a raciocinar sobre essas seqüências, é provável que comecemos a
imaginar maneiras de reorganizar ou representar tais seqüências de uma maneira
que a quantidade de bytes possa ser reduzida.

É dentro desse contexto de raciocínio, que muitos teóricos se tornaram (e
tornam-se) criadores de diversos algoritmos de compressão de arquivos, com
finalidade de uso nas mais diversas áreas da computação. Cabe a você, a
partir do entendimento da importância de se comprimir dados e do conheci-
mento de alguns algoritmos de compressão de arquivos, obter uma base de
conhecimento no assunto. A partir disso, estará pronto para encarar os desa-
fios da área da compactação, quando surgirem diante de você, exigidos pelo
próprio mercado.

Estando consciente da importância da compressão de dados para a socie-
dade e para o profissional da informação, verá, nesta aula, alguns famosos
algoritmos de compactação de dados.

6.1 Freqüência de caracteres

Esse algoritmo é utilizado para compactar arquivos contendo texto alfabé-
tico. Considere como exemplo o arquivo texto a seguir com 32 caracteres:

AAAAAHHHFGGGGBBPEEECCCCCCDLLLLRR

Sobre esse algoritmo, Szwarcfiter e Markenzon (1994, p. 293) dizem
que é necessário determinar “a quantidade de símbolos idênticos consecutivos
existentes no texto. Cada uma das subseqüências máximas de símbolos idên-
ticos do texto é substituída por um número indicando a freqüência do símbolo
em questão”.

O texto exemplificado anteriormente seria compactado como:

5A3H1F4G2B1P3E6C1D4L2R

AULA 6 • ESTRUTURA DE DADOS

UNITINS • ANÁLISE E DESENVOLVIMENTO DE SISTEMAS • 3º PERÍODO 91

Essa representação compactada do exemplo possui 22 caracteres, o que
resulta em uma economia de 10 bytes (lembre-se de que cada caractere ocupa
1 byte de memória).

Podemos melhorar ainda mais essa compactação. Para isso, basta definir
que a ausência do número que indica a freqüência do símbolo implica freqüên-
 cia igual a um. A partir dessa nova situação, a compactação ficaria assim:

5A3HF4G2BP3E6CD4L2R

Resultando em uma economia de mais 3 bytes, agora 13 bytes do total da
mensagem original. Você deve estar pensando: e se o texto tiver dígitos numé-
ricos? Nesse caso, a freqüência do dígito concatenada com ele mesmo poderia
ser confundida com um número de mais de um algarismo. Isso é um problema,
mas podemos adotar algum símbolo especial para sanar esse problema. Assim
se pode empregar o símbolo @ para indicar que, na seqüência, será apresen-
tado um símbolo do texto original e não uma freqüência. Por exemplo:

KKKK4444PP888TJJJJJ22222NN

Resulta na representação compactada:

4K4@42P3@8T5J5@22N

Como o texto original possui 26 e a representação compactada 18, houve
uma economia de 8 bytes. A seguir, é apresentada a função que implementa o
algoritmo de freqüência de caracteres.

public static String compactarSequencia(String sequencia)

{

StringBuffer sbCompactado = new StringBuffer();

int i = 0;

while(i < sequencia.length())

{

int nOcorrencias = 0;

char ch = sequencia.charAt(i);

int j = i;

while(j < sequencia.length() &&

sequencia.charAt(j)==ch){

nOcorrencias++;

j++;

i++;

}

String cAdd;

AULA 6 • ESTRUTURA DE DADOS

92 3º PERÍODO • ANÁLISE E DESENVOLVIMENTO DE SISTEMAS • UNITINS

if (Character.isDigit(ch))

cAdd = “@”+ch;

else

cAdd = Character.toString(ch);

if(nOcorrencias==1)

sbCompactado.append(cAdd);

else

if(nOcorrencias>1)

sbCompactado.append(Integer.

toString(nOcorrencias)+cAdd);

}

return sbCompactado.toString();

}

6.2 Algoritmo de Huffman

É, basicamente, a mesma idéia por trás do algoritmo de freqüência de carac-
teres, no entanto utiliza árvore binária.

Considere um alfabeto e um texto constituído somente por símbolos desse
alfabeto. Ao invés de expressarmos a freqüência no novo texto resultante
da compactação, como ocorre no algoritmo de freqüência de caracteres,
queremos codificar o texto original em um texto codificado somente por bits
(0 ou 1).

Tenenbaum, Langsan e Augestein (1995) apresentam a idéia desse algo-
ritmo em um exemplo. Suponha que um alfabeto consista nos símbolos A, B, C e
D e que códigos são atribuídos a esses símbolos, como segue na Tabela 1.

Tabela 1 Exemplo de códigos para o algoritmo de Huffman.

SÍMBOLO CÓDIGO
A 010
B 100
C 000
D 111

Fonte: Tanenbaum, Langsan e Augenstein (1995).

De acordo com a tabela anterior, o texto ABACCDA seria codificado, substi-
tuindo cada símbolo por seu código, como 010100010000000111010. Note
que foram usados três bits para cada símbolo. Assim é preciso 21 bits para o
novo texto codificado. Se para cada símbolo forem associados os códigos da
Tabela 2, poderemos ter uma codificação menor.

AULA 6 • ESTRUTURA DE DADOS

UNITINS • ANÁLISE E DESENVOLVIMENTO DE SISTEMAS • 3º PERÍODO 93

Tabela 2 Outro exemplo de códigos para o algoritmo de Huffman.

SÍMBOLO CÓDIGO
A 0
B 110
C 10
D 111

Fonte: Tanenbaum, Langsan e Augenstein (1995).

Assim a nova mensagem, codificada a partir do texto original, fica
0110010101110, necessitando agora de somente 13 bits. Em suma, a idéia
por trás do algoritmo de Huffman é encontrar uma codificação capaz de dimi-
nuir o tamanho, em bits, da mensagem original.

Isso acontece porque o menor código (representando a letra A) aparece com
mais freqüência do que os códigos mais extensos (representando as letras B e D).
Desse modo, em textos maiores que tenham símbolos que raramente apareçam,
a economia é substancial (TENENBAUM; LANGSAN; AUGENSTEIN, 1995).

Você deve estar se perguntando: como posso trocar D (um caractere) por
111 (três caracteres) e conseguir compactação? A resposta está no primeiro
período do curso, na codificação ASCII. Lembre-se de que, no código ASCII,
todo caractere tem um número associado entre 0 e 255. Para representar todos
esses números binariamente, são necessários 8 bits (82 = 256). Assim, para repre-
sentar cada caractere são necessários 8 bits. A idéia do algoritmo de Huffman
está em representar os símbolos que ocorrem com maior freqüência com menos
bits e os que acontecem com menor freqüência com mais bits (8, por exemplo).
Por isso é possível compactar com Huffman.

Tenenbaum, Langsan e Augenstein (1995, p. 351) informam que, “em
geral, os códigos não são formados pela freqüência de caracteres dentro de
uma única mensagem isolada, mas por sua freqüência dentro de um conjunto
inteiro de mensagens”.

Nesse sentido, textos da língua portuguesa devem ser codificados de acordo
com a freqüência relativa de ocorrência dos símbolos na língua portuguesa para
obter um melhor resultado.

Devemos tomar cuidado para que o código de um símbolo não seja prefixo
de outro código. Isso visa a evitar confusão entre um código e um prefixo. Por
exemplo, veja que na Tabela 2 o código do símbolo A é 0 e que 0 não é prefixo
dos outros códigos, ou seja, nenhum dos outros códigos começa com 0. Todos
os demais símbolos começam seus códigos com 1, o único que tem o segundo
bit igual a 0 é o símbolo C; e assim por diante.

Szwarcfiter e Markenzon (1994, p. 294) complementam afirmando que
“uma vantagem da utilização de códigos prefixo é a facilidade existente para
executar as tarefas de codificação e decodificação”.

AULA 6 • ESTRUTURA DE DADOS

94 3º PERÍODO • ANÁLISE E DESENVOLVIMENTO DE SISTEMAS • UNITINS

As entradas do algoritmo de Huffman são:

quantidade de símbolos do alfabeto do texto original;

um vetor com a quantidade de vezes que cada símbolo aparece no texto
(vetor de freqüência).

Os passos para implementação do algoritmo de Huffman são apresentados
a seguir:

1. Varra o texto contando os símbolos e montando o vetor de freqüências.

2. Construa um nó para cada símbolo do alfabeto do texto. O nó deve ter
ponteiros suficientes para encadear com o pai e as subárvores esquerda
e direita. Cada um desses nós são, inicialmente, raízes de diferentes
árvores e não possuem filhos.

3. Enquanto houver mais de uma árvore:

3.1 Encontre nas raízes as duas freqüências que aparecem menos.

3.2 Construa um nó que combine os nós identificados em 3.1 em um
novo nó e armazene no novo nó a soma das freqüências.

3.3 Atribua como subárvore esquerda do nó criado em 3.2 o nó com
menor freqüência e o outro como subárvore direita.

4. Varra o texto original substituindo cada símbolo por seu código repre-
sentado na árvore.

Vamos exemplificar o algoritmo passo a passo e entender como os códigos da
Tabela 2 foram obtidos. Suponha um texto contendo a mensagem ABACCDA.

1. Varra o texto contando os símbolos e montando o vetor de freqüências.

Símbolos = 4

A = 3

B = 1

C = 2

D = 1

2. Construa um nó para cada símbolo do alfabeto do texto.

3. Enquanto houver mais de uma árvore:

AULA 6 • ESTRUTURA DE DADOS

UNITINS • ANÁLISE E DESENVOLVIMENTO DE SISTEMAS • 3º PERÍODO 95

3.1. Encontre nas raízes as duas freqüências que aparecem menos;

3.2. Construa um nó que combine os nós identificados em 3.1 em um
 novo nó e armazene no novo nó a soma das freqüências;

3.3. Atribua como subárvore esquerda do nó criado em 3.2 o nó com
menor freqüência e o outro como subárvore direita;

3.1. Encontre nas raízes as duas freqüências que aparecem menos;

3.2. Construa um nó que combine os nós identificados em 3.1 em um
 novo nó e armazene no novo nó a soma das suas freqüências;

3.3. Atribua como subárvore esquerda do nó criado em 3.2 o nó com
menor freqüência e o outro como subárvore direita;

AULA 6 • ESTRUTURA DE DADOS

96 3º PERÍODO • ANÁLISE E DESENVOLVIMENTO DE SISTEMAS • UNITINS

3.1. Encontre nas raízes as duas freqüências que aparecem menos;

3.2. Construa um nó que combine os nós identificados em 3.1 em um
 novo nó e armazene no novo nó a soma das suas freqüências;

3.3. Atribua como subárvore esquerda do nó criado em 3.2 o nó com
 menor freqüência e o outro como subárvore direita.

4. Varra o texto original substituindo cada símbolo por seu código represen-
tado na árvore.
Desse modo, observe que os códigos surgem do percurso da raiz até a folha
que armazena o símbolo do alfabeto original. Para cada visita a um filho à
esquerda, um 0 (zero) será obtido, por outro lado, cada visita a um filho à
direita, um 1 é obtido. Assim o símbolo com seus respectivos códigos são:

A = 0
B = 110
C = 10
D = 111

AULA 6 • ESTRUTURA DE DADOS

UNITINS • ANÁLISE E DESENVOLVIMENTO DE SISTEMAS • 3º PERÍODO 97

Repare que o algoritmo de Huffman não vale somente para a compactação
de textos, apesar de ser sua principal aplicação. Dependendo da distribuição de
freqüência dos símbolos, o ganho com o método pode ser maior ou menor, ou seja,
quanto menos uniforme for a distribuição dos símbolos, maior será o ganho.

6.3 LZW

O algoritmo conhecido como LZW (Lempel-Ziv-Welch) é derivado dos nomes
dos seus desenvolvedores: Abraham Lempel, Jakob Ziv e Terry Welch.

Assim como no algoritmo de Huffman, o LZW procura substituir seqüências
de símbolos por códigos. Para obter a compressão de dados, os códigos devem
ser menores que as seqüências representadas por eles. Na prática, esse algo-
ritmo consegue um maior nível de compressão de dados que os outros métodos
citados anteriormente.

O LZW é usado para compactar arquivos binários em geral, a exemplo das
imagens, vídeos e dos textos. Iremos nos ater na exemplificação de tal algoritmo
por meio de seu pseudocódigo. Cabe a você procurar implementá-lo, em Java,
a fim de exercitar sua capacidade nessa área.

A seguir, na Figura 1, é apresentado em fluxograma os algoritmos de codi-
ficação (compressão) e decodificação (descompressão) do LZW.

Figura1 O cerne do algoritmo LZW. Codificador (compressão) e decodifi-
cador (descompressão).

Fonte: UCPEL ([s.d.]).

AULA 6 • ESTRUTURA DE DADOS

98 3º PERÍODO • ANÁLISE E DESENVOLVIMENTO DE SISTEMAS • UNITINS

Saiba maisSaiba maisSaiba maisSaiba maisSaiba maisSaiba maisSaiba maisSaiba mais

Após estudarmos alguns algoritmos de compressão de dados, chegamos ao fim
da aula. Não se esqueça de pôr em prática os novos conceitos aprendidos. Use a
linguagem Java para implementar e fazer seu próprio compactador de dados. Você
pode desenvolver um novo aplicativo para concorrer com o Winzip e o Winrar.

Nesta aula, tomamos consciência da importância dos algoritmos de
compactação, ou compressão para a sociedade da informação, incluindo suas
implementações para suprir diversas facetas que a computação tem. Tomamos
conhecimento de três métodos de compressão. Um deles foi o algoritmo de
freqüência de caracteres, que considera somente vetores alfanuméricos, execu-
tando compressão em caso de repetição de caracteres, um após o outro, dentro
de uma seqüência. Vimos o algoritmo de Huffman, seguindo a mesma idéia
de freqüência de caracteres, porém utilizando-se de uma árvore binária. Por
fim, observamos o coração do método LZW, muito famoso e utilizando para
compactar todo tipo de arquivo, binário ou textual.

1. Após ter estudado sobre a definição de compressão de dados e a sua impor-
tância, analise as afirmativas e, em seguida assinale a alternativa correta.

I. Uma das utilizações comumente conhecidas e úteis das ferramentas de
compressão de dados é o empacotamento de dois ou mais arquivos de
dados (xls, txt, doc, etc.) em um único arquivo compactado.

II. A compactação de um arquivo é útil em várias situações. Entre elas, o
armazenamento de cópia de segurança (backup), com finalidade de
transporte, distribuição ou upload.

III. Uma vez realizada a compressão de arquivos via um aplicativo popular,
como o Winzip, teremos um arquivo resultante contendo o empacota-
mento de arquivos e diretórios. Assim, para que possamos utilizar os
arquivos do pacote, será necessária, antes, a extração dos arquivos

AULA 6 • ESTRUTURA DE DADOS

UNITINS • ANÁLISE E DESENVOLVIMENTO DE SISTEMAS • 3º PERÍODO 99

desejados, ou seja, executar um processo para descomprimir e salvar
em disco os arquivos na forma original.

IV. A internet é uma das maiores beneficiárias da compressão de dados,
pois arquivos menores são mais rapidamente transmitidos na grande
rede, proporcionando um ganho maior de performance e velocidade de
navegação, por parte dos usuários.

a) Todas as afirmativas estão corretas.

b) Somente as afirmativas I, II e III estão corretas.

c) Somente as afirmativas II, III e IV estão corretas.

d) Somente as afirmativas I, III e IV estão corretas.

2. Após ler sobre a importância da compressão de dados, coloque-se em lugar
de um consultor de empresas e explique como uma empresa de serviço de
hospedagem de sítios poderia economizar dinheiro a partir da utilização da
compressão de dados.

3. Como vimos nesta aula, existem diversos algoritmos de compressão de
dados, cada um com suas características peculiares. Sobre esses algo-
ritmos de compressão de dados, analise os itens a seguir e assinale a
alternativa correta.

I. O algoritmo de freqüência de caracteres recebe como entrada um vetor
de caracteres alfanuméricos e, como saída, devolve um vetor, também
de caracteres alfanuméricos, com exceção do caractere ‘@’, sempre
menor, no mínimo em um caractere do que a seqüência de entrada.

II. O algoritmo de Huffman, entre os três explicados na aula, é o que apre-
senta a saída com maior nível de compressão para todos os casos.

III. O algoritmo LZW é utilizado para comprimir qualquer tipo de arquivo,
diferentemente do algoritmo de freqüência de caracteres, que é indicado
para compressão de seqüência de caracteres alfabéticos e numéricos.

IV. O algoritmo de Huffman segue a mesma idéia do algoritmo de freqüência
de caracteres, porém utilizando-se de árvore binária.

a) Somente as afirmativas I e II e estão corretas.

b) Somente as afirmativas I e III estão corretas.

c) Somente as afirmativas II e III estão corretas.

d) Somente as afirmativas III e IV estão corretas.

4. Escreva um pequeno programa em Java, que possibilite a decodificação do
algoritmo de compressão por freqüência de caracteres. Ele será justamente

AULA 6 • ESTRUTURA DE DADOS

100 3º PERÍODO • ANÁLISE E DESENVOLVIMENTO DE SISTEMAS • UNITINS

o “caminho de volta” (descompressão) do algoritmo “de ida” (compressão).
Teste seu algoritmo com as entradas expostas nesta aula, bem como outras
entradas de sua preferência.

Na atividade um, a resposta correta é a letra (a). Todas as afirmativas
estão de acordo com os assuntos explanados em aula e estudados em materiais
referenciados.

Na atividade dois, você deve ter pensado como um consultor de tecnologia
da informação e focado em uma empresa de hospedagem de sítios. Assim, para
a empresa economizar dinheiro, a partir do uso da compactação, ela poderia
manter os arquivos de usuários compactados, economizando espaço em disco,
diminuindo o gasto com aquisição de novas unidades de disco rígido ou de fitas
de backup.

Na atividade três, a resposta correta é a letra (d). A afirmativa (I) erra ao
afirmar que a saída é um vetor sempre menor que o de entrada: no caso da
entrada não tem nenhuma repetição de caracteres adjacentes, a string resul-
tante será igual à string de entrada. A alternativa (II) também está errada, pois
o algoritmo LZW é o que oferece um maior nível de compressão, entre os três
algoritmos expostos em aula. As demais alternativas estão de acordo com os
assuntos explanados em aula e estudados em materiais referenciados.

Finalmente, na atividade quatro, você deve ter desenvolvido um aplicativo
em Java para decodificação de seqüências de caracteres (strings) compactadas
com o algoritmo de compressão por freqüência de caracteres. Você deve ter
dado uma olhada na função public static String compactarSequencia(String
sequencia) exposta nesta aula e até a copiado no programa feito, para poder
gerar saídas codificadas que pudessem ser copiadas, servindo de teste para a
função de decodificação que você criou. A função deu certo, uma vez que a
saída que ela retorna, mostrada em tela, por exemplo, pela mensagem System.
out.println(resultado), é a seqüência de caracteres original, que servira de entrada
para a função de compactação.

Se você respondeu corretamente a essas questões, atingiu os dois objetivos
propostos para esta aula: compreender a importância da compressão de dados
e conhecer algoritmos de compressão de dados (freqüência de caracteres,
Huffman e LZW).

SZWARCFITER, Jayme Luiz; MARKENZON, Lílian. Estruturas de dados e seus
algoritmos. Rio de Janeiro: LTC, 1994.

AULA 6 • ESTRUTURA DE DADOS

UNITINS • ANÁLISE E DESENVOLVIMENTO DE SISTEMAS • 3º PERÍODO 101

TENENBAUM, Aaron M.; LANGSAN, Yedidyah; AUGENSTEIN, Moshe J.
Estrutura de dados usando C. São Paulo: Makron Books, 1995.

UCPEL. Compressão – LZW (Lempel-Ziv-Welch). Disponível em: <http://atlas.
ucpel.tche.br/~tst/lzw.html>. Acesso em: 17 set. 2008.

Você conhecerá os grafos. Um grafo é uma estrutura de dados com capaci-
dade de representar problemas complexos e resolvê-los com algoritmos relativa-
mente simples. Que venham os grafos!

Anotações

AULA 6 • ESTRUTURA DE DADOS

102 3º PERÍODO • ANÁLISE E DESENVOLVIMENTO DE SISTEMAS • UNITINS

