YA 6

L

Compressao de dados

Objetivos ,

Esperamos que, ao final desta aula, vocé seja capaz de:

e compreender a importancia da compressao de dados;

* conhecer algoritmos de compressdo de dados (freqiéncia de caracteres,
Huffman e LZW).

Pré-requisitos)

Para compreender satisfatoriamente esta aula, é necessdrio conhecer as
drvores bindrias e os tipos de arquivos (estudados nas aulas um e quatro deste
caderno, respectivamente). As drvores bindrias sGo importantes porque uma das
técnicas aqui discutida (algoritmo de Huffman) faz uso de drvores bindrias em sua
solugdo. Além disso, é importante conhecer também os tipos de arquivos, uma
vez que todos os algoritmos apresentados nesta aula fazem uso de arquivos.

Introducao ’

Compactar, comprimir, zipar. Eis expressdes comuns do jargdo da informé-
tica que, provavelmente, j& foram usadas por vocé ao se referir & compressdo
de arquivos.

A compressdo de dados ou, em inglés, data compression, consiste na utili-
zagdo de um conjunto de métodos e outros pormenores préticos com o intuito
da reducdo do espaco armazenado em unidades de meméria secunddria ou
mesmo primdria de um sistema computacional. Um arquivo comprimido terd
seu tamanho reduzido, como saida resultante da aplicagdo de um algoritmo
de compactacdo de alguma aplicagdo, como, por exemplo, gzip, winzip ou
winrar. Essas aplicacdes também incluem algoritmos de empacotamento, a fim
de permitir que multiplos arquivos sejam compactados e concatenados dentro de
um Unico arquivo resultado, aumentando a praticidade do processo.

UNITINS « ANALISE E DESENVOLVIMENTO DE SISTEMAS « 3° PERIODO 89

AULA 6 « ESTRUTURA DE DADOS

A necessidade de compressdo de dados é algo comumente relacionado &
vida das pessoas, seja de maneira direta ou indireta. Na internet, a compressdo
ajuda a diminuir a quantidade de tréfego na grande rede, aumentando a velo-
cidade de navegacao, realizacdo de downloads de arquivos e visualizagdo de
videos. Na vida offline, arquivos compactados sdo preferiveis quando hd inte-
resse de armazenamento de maior nimero de dados possivel no menor espaco
de meméria secunddria disponivel, como em pen-drives, memmory cards, discos
rigidos e demais unidades de meméria.

Muitos arquivos de extensdes famosas, como pdf (textos, e-books), mp3
(@udio, msicas), gif (imagens, fotos), zip (arquivos em geral), mpg (videos),
utilizam algoritmos de compactagcdo em suas concepcdes. Arquivos sdo sequén-
cias de bytes, caracteres alfabéticos, numéricos e simbolos imprimiveis ou ndo. Se
comegarmos a raciocinar sobre essas seqiéncias, é provavel que comecemos a
imaginar maneiras de reorganizar ou representar tais seqiéncias de uma maneira
que a quantidade de bytes possa ser reduzida.

E dentro desse contexto de raciocinio, que muitos tedricos se tornaram (e
tornam-se) criadores de diversos algoritmos de compressdo de arquivos, com
finalidade de uso nas mais diversas dreas da computacdo. Cabe a vocé, a
partir do entendimento da importéncia de se comprimir dados e do conheci-
mento de alguns algoritmos de compressdo de arquivos, obter uma base de
conhecimento no assunto. A partir disso, estard pronto para encarar os deso-
fios da drea da compactacdo, quando surgirem diante de vocé, exigidos pelo
préprio mercado.

Estando consciente da importancia da compressdo de dados para a socie-
dade e para o profissional da informacdo, verd, nesta aula, alguns famosos
algoritmos de compactacdo de dados.

6.1 Freqiiéncia de caracteres

Esse algoritmo é utilizado para compactar arquivos contendo texto alfabé-
tico. Considere como exemplo o arquivo texto a seguir com 32 caracteres:

AAAAAHHHFGGGGBBPEEECCCCCCDLLLLRR

Sobre esse algoritmo, Szwarcfiter e Markenzon (1994, p. 293) dizem
que é necessdrio determinar “a quantidade de simbolos idénticos consecutivos
existentes no texto. Cada uma das subseqiéncias mdximas de simbolos idén-
ticos do texto é substituida por um ndmero indicando a freqiéncia do simbolo
em questdo”.

O texto exemplificado anteriormente seria compactado como:

5A3H1FAG2B1P3E6CT1DAL2R

90 3° PERIODO « ANALISE E DESENVOLVIMENTO DE SISTEMAS « UNITINS

AULA 6 « ESTRUTURA DE DADOS

Essa representagdo compactada do exemplo possui 22 caracteres, o que
resulta em uma economia de 10 bytes (lembre-se de que cada caractere ocupa
1 byte de meméria).

Podemos melhorar ainda mais essa compactacdo. Para isso, basta definir
que a auséncia do nimero que indica a freqiéncia do simbolo implica freqién-
cia igual a um. A partir dessa nova situacdo, a compactacdo ficaria assim:

5A3HFAG2BP3E6CDAL2R

Resultando em uma economia de mais 3 bytes, agora 13 bytes do total da
mensagem original. Vocé deve estar pensando: e se o texto tiver digitos numé-
ricos? Nesse caso, a freqiéncia do digito concatenada com ele mesmo poderia
ser confundida com um nimero de mais de um algarismo. Isso é um problema,
mas podemos adotar algum simbolo especial para sanar esse problema. Assim
se pode empregar o simbolo @ para indicar que, na seqiéncia, serd apresen-
tado um simbolo do texto original e ndo uma freqiéncia. Por exemplo:

KKKK4444PP888T1JJJJJ22222NN

Resulta na representacdo compactada:

4K4@42P3@8T5J5@22N

Como o texto original possui 26 e a representacdo compactada 18, houve
uma economia de 8 bytes. A seguir, é apresentada a fun¢do que implementa o
algoritmo de freqiéncia de caracteres.

public static String compactarSequencia (String sequencia)
{

StringBuffer sbCompactado = new StringBuffer();

int 1 = 0;

while (i < sequencia.length())

{

int nOcorrencias = 0;
char ch = sequencia.charAt (i);
int j = 1i;

while (j < sequencia.length() &&
sequencia.charAt (j)==ch) {

nOcorrencias++;

J++;

i++;

}

String cAdd;

UNITINS « ANALISE E DESENVOLVIMENTO DE SISTEMAS « 3° PERIODO 91

AULA 6 « ESTRUTURA DE DADOS

if (Character.isDigit (ch))

cAdd = “@”+ch;
else
cAdd = Character.toString(ch);

if (nOcorrencias==1)
sbCompactado.append (cAdd) ;
else

if (nOcorrencias>1)
sbCompactado.append (Integer.
toString (nOcorrencias) +cAdd) ;

}

return sbCompactado.toString();

6.2 Algoritmo de Huffman

E, basicamente, a mesma idéia por trds do algoritmo de freqiéncia de carac-
teres, no entanto utiliza drvore bindria.

Considere um alfabeto e um texto constituido somente por simbolos desse
alfabeto. Ao invés de expressarmos a freqiéncia no novo texto resultante
da compactagdo, como ocorre no algoritmo de freqiéncia de caracteres,
queremos codificar o texto original em um texto codificado somente por bits
(O ou 1).

Tenenbaum, Langsan e Augestein (1995) apresentam a idéia desse algo-
ritmo em um exemplo. Suponha que um alfabeto consista nos simbolos A, B, C e
D e que cédigos sdo atribuidos a esses simbolos, como segue na Tabela 1.

Tabela 1 Exemplo de cédigos para o algoritmo de Huffman.

SIMBOLO CODIGO
A 010
B 100
C 000
D 11

Fonte: Tanenbaum, langsan e Augenstein [1995).

De acordo com a tabela anterior, o texto ABACCDA seria codificado, substi-
tuindo cada simbolo por seu cédigo, como 010100010000000111010. Note
que foram usados trés bits para cada simbolo. Assim é preciso 21 bits para o
novo texto codificado. Se para cada simbolo forem associados os cédigos da
Tabela 2, poderemos ter uma codificagdo menor.

92 3° PERIODO « ANALISE E DESENVOLVIMENTO DE SISTEMAS « UNITINS

AULA 6 « ESTRUTURA DE DADOS

Tabela 2 Outro exemplo de cédigos para o algoritmo de Huffman.

SIMBOLO CODIGO
A 0
B 110
C 10
D 11

Fonte: Tanenbaum, langsan e Augenstein [1995).

Assim a nova mensagem, codificada a partir do texto original, fica
0110010101110, necessitando agora de somente 13 bits. Em suma, a idéia
por trés do algoritmo de Huffman é encontrar uma codificagdo capaz de dimi-
nuir o tamanho, em bits, da mensagem original.

Isso acontece porque o menor cédigo (representando a letra A) aparece com
mais freqiéncia do que os cédigos mais extensos (representando as letras B e D).

Desse modo, em textos maiores que tenham simbolos que raramente aparegam,
a economia é substancial TENENBAUM; LANGSAN; AUGENSTEIN, 1995).

Vocé deve estar se perguntando: como posso trocar D (um caractere) por
111 (trés caracteres) e conseguir compactacdo? A resposta estd no primeiro
periodo do curso, na codificacdo ASCII. Lembre-se de que, no cédigo ASCII,
todo caractere tem um nimero associado entre O e 255. Para representar todos
esses nimeros binariamente, sdo necessdrios 8 bits (82 = 256). Assim, para repre-
sentar cada caractere sdo necessdrios 8 bits. A idéia do algoritmo de Huffman
estd em representar os simbolos que ocorrem com maior freqiéncia com menos
bits e os que acontecem com menor freqiéncia com mais bits (8, por exemplo).
Por isso é possivel compactar com Huffman.

Tenenbaum, Langsan e Augenstein (1995, p. 351) informam que, “em
geral, os cédigos ndo sdo formados pela freqiéncia de caracteres dentro de
uma Unica mensagem isolada, mas por sua freqiéncia dentro de um conjunto
inteiro de mensagens”.

Nesse sentido, textos da lingua portuguesa devem ser codificados de acordo
com a freqiéncia relativa de ocorréncia dos simbolos na lingua portuguesa para
obter um melhor resultado.

Devemos tomar cuidado para que o cédigo de um simbolo ndo seja prefixo
de outro cédigo. Isso visa a evitar confusdo entre um cédigo e um prefixo. Por
exemplo, veja que na Tabela 2 o cédigo do simbolo A é O e que O ndo é prefixo
dos outros cédigos, ou seja, nenhum dos outros cédigos comeca com 0. Todos
os demais simbolos comecam seus cédigos com 1, o Gnico que tem o segundo
bit igual a O é o simbolo C; e assim por diante.

Szwarcfiter e Markenzon (1994, p. 294) complementam afirmando que
“uma vantagem da utilizagdo de cédigos prefixo é a facilidade existente para
executar as tarefas de codificacdo e decodificacdo”.

UNITINS « ANALISE E DESENVOLVIMENTO DE SISTEMAS « 3° PERIODO 93

AULA 6 « ESTRUTURA DE DADOS

As entradas do algoritmo de Huffman séo:
* quantidade de simbolos do alfabeto do texto original;

® um vetor com a quantidade de vezes que cada simbolo aparece no texto
(vetor de frequéncial).

Os passos para implementagdo do algoritmo de Huffman sdo apresentados
a seguir:

1. Varra o texto contando os simbolos e montando o vetor de freqiéncias.

2. Construa um né para cada simbolo do alfabeto do texto. O né deve ter
ponteiros suficientes para encadear com o pai e as subdrvores esquerda
e direita. Cada um desses nds sdo, inicialmente, raizes de diferentes
drvores e ndo possuem filhos.

3. Enquanto houver mais de uma drvore:
3.1 Encontre nas raizes as duas freqiéncias que aparecem menos.

3.2 Construa um né que combine os nés identificados em 3.1 em um
novo né e armazene no novo né a soma das freqiéncias.

3.3 Atribua como subdrvore esquerda do né criado em 3.2 o né com
menor freqiéncia e o outro como subdrvore direita.

4. Varra o texto original substituindo cada simbolo por seu cédigo repre-
sentado na drvore.

Vamos exemplificar o algoritmo passo a passo e entender como os cédigos da
Tabela 2 foram obtidos. Suponha um texto contendo a mensagem ABACCDA.

1. Varra o texto contando os simbolos e montando o vetor de freqiéncias.

Simbolos = 4
A=3
B=1
C=2
D=1

2. Construa um né para cada simbolo do alfabeto do texto.

©» ® @ ©

3. Enquanto houver mais de uma érvore:

94 3° PERIODO « ANALISE E DESENVOLVIMENTO DE SISTEMAS « UNITINS

AULA 6 « ESTRUTURA DE DADOS

3.1. Encontre nas raizes as duas freqiéncias que aparecem menos;

3.2. Construa um né que combine os nés identificados em 3.1 em um
novo né e armazene no novo né a soma das freqiéncias;

CECEECENCENE

3.3. Atribua como subérvore esquerda do né criado em 3.2 o né com
menor freqiéncia e o outro como subdrvore direita;

e
8 e O @

3.1. Encontre nas raizes as duas freqiéncias que aparecem menos;

= @

3.2. Construa um né que combine os nés identificados em 3.1 em um

novo né e armazene no novo né a soma das suas freqiéncias;

S
B & @ & &

3.3. Atribua como subdrvore esquerda do né criado em 3.2 o né com

menor freqiéncia e o outro como subdrvore direita;

UNITINS « ANALISE E DESENVOLVIMENTO DE SISTEMAS « 3° PERIODO 95

AULA 6 « ESTRUTURA DE DADOS

3.1. Encontre nas raizes as duas freqiéncias que aparecem menos;

3.2. Construa um né que combine os nés identificados em 3.1 em um
novo né e armazene no novo né a soma das suas freqiéncias;

ABCD=7,

3.3. Atribua como subdrvore esquerda do né criado em 3.2 o né com
menor freqiéncia e o outro como subdrvore direita.

4. Varra o texto original substituindo cada simbolo por seu cédigo represen-
tado na drvore.

Desse modo, observe que os cédigos surgem do percurso da raiz até a folha
que armazena o simbolo do alfabeto original. Para cada visita a um filho &
esquerda, um O (zero) seré obtido, por outro lado, cada visita a um filho &
direita, um 1 é obtido. Assim o simbolo com seus respectivos cédigos sao:
A=0

B=110

C=10

D=111

96 3° PERIODO « ANALISE E DESENVOLVIMENTO DE SISTEMAS « UNITINS

AULA 6 « ESTRUTURA DE DADOS

Repare que o algoritmo de Huffman ndo vale somente para a compactacéo
de textos, apesar de ser sua principal aplicacdo. Dependendo da distribuicdo de
freqiéncia dos simbolos, o ganho com o método pode ser maior ou menor, ou sejq,
quanto menos uniforme for a distribuicdo dos simbolos, maior serd o ganho.

6.3 LZW

O algoritmo conhecido como LZW (Lempel-Ziv-Welch) é derivado dos nomes
dos seus desenvolvedores: Abraham Lempel, Jakob Ziv e Terry Welch.

Assim como no algoritmo de Huffman, o LZW procura substituir seqiéncias
de simbolos por cédigos. Para obter a compressao de dados, os cédigos devem
ser menores que as sequéncias representadas por eles. Na prdtica, esse algo-
ritmo consegue um maior nivel de compressdo de dados que os outros métodos
citados anteriormente.

O LZW é usado para compactar arquivos bindrios em geral, a exemplo das
imagens, videos e dos textos. Iremos nos ater na exemplificacdo de tal algoritmo
por meio de seu pseudocédigo. Cabe a vocé procurar implementd-lo, em Java,
a fim de exercitar sua capacidade nessa drea.

A seguir, na Figura 1, é apresentado em fluxograma os algoritmos de codi-
ficagdo (compressdo) e decodificacdo (descompressao) do LZW.

Figural O cerne do algoritmo LZW. Codificador (compressdo) e decodifi-
cador (descompressdo).

inicializar diciondrio inicializar diciondrio

e obter seqiéncia w e obter seqiiéncia w

.| obter préximo inserir primeiro cédigo w
caracter c na seqiiéncia de saida

obter novo
cédigo w
Y

wc estd
no diciondrio?

definirw = ¢

output na
< atualizar tradugdo de W
< diciondrio no diciondrio

7 definirw = w ¢
- A :
retornar saida . atgqllzar
w codificado diciondrio com w
o
W el chlgr de w
decodificador
descompressdo
codificador
compressdo

Fonte: UCPEL ([s.d.]).

UNITINS « ANALISE E DESENVOLVIMENTO DE SISTEMAS « 3° PERIODO 97

AULA 6 « ESTRUTURA DE DADOS

Saiba mais } N

Para obter mais informagdes sobre os métodos de compactagdo de Huffman e LZW,
inclusive, com direito a um applet Java animado sobre a compressdo com Huffman
e LZW, acesse o sitio: <http://www.cs.sfu.ca/CC/365/li/squeeze/>. Esse sitio
também permite o download do cédigo fonte em Java do applet que anima o algo-

ritmo LZW.

»

Apés estudarmos alguns algoritmos de compressdo de dados, chegamos ao fim
da aula. Nao se esqueca de pdr em prdtica os novos conceitos aprendidos. Use a
linguagem Java para implementar e fazer seu préprio compactador de dados. Vocé
pode desenvolver um novo aplicativo para concorrer com o Winzip e o Winrar.

Sintese da aula)

Nesta aula, tomamos consciéncia da importdncia dos algoritmos de
compactagdo, ou compressdo para a sociedade da informacdo, incluindo suas
implementacdes para suprir diversas facetas que a computacdo tem. Tomamos
conhecimento de trés métodos de compresséo. Um deles foi o algoritmo de
freqiéncia de caracteres, que considera somente vetores alfanuméricos, execu-
tando compress@o em caso de repeticdo de caracteres, um apéds o outro, dentro
de uma seqiéncia. Vimos o algoritmo de Huffman, seguindo a mesma idéia
de frequéncia de caracteres, porém utilizando-se de uma érvore binéria. Por
fim, observamos o coragdo do método LZW, muito famoso e utilizando para
compactar todo tipo de arquivo, bindrio ou textual.

Atividades ‘

1. Apés ter estudado sobre a definicao de compressdo de dados e a sua impor-
tancia, analise as afirmativas e, em seguida assinale a alternativa correta.

|. Uma das utilizacdes comumente conhecidas e Gteis das ferramentas de
compressdo de dados é o empacotamento de dois ou mais arquivos de
dados (xls, txt, doc, efc.) em um Unico arquivo compactado.

Il. A compactagdo de um arquivo é Util em vdrias situagdes. Entre elas, o
armazenamento de cépia de seguranca (backup), com finalidade de
transporte, distribuicdo ou upload.

lll. Uma vez realizada a compress@o de arquivos via um aplicativo popular,
como o Winzip, teremos um arquivo resultante contendo o empacota-
mento de arquivos e diretérios. Assim, para que possamos utilizar os
arquivos do pacote, serd necessdria, antes, a extracdo dos arquivos

98 3° PERIODO « ANALISE E DESENVOLVIMENTO DE SISTEMAS « UNITINS

AULA 6 « ESTRUTURA DE DADOS

desejados, ou seja, executar um processo para descomprimir e salvar
em disco os arquivos na forma original.

IV. A internet é uma das maiores beneficidrias da compressdo de dados,
pois arquivos menores sdo mais rapidamente transmitidos na grande
rede, proporcionando um ganho maior de performance e velocidade de
navegacdo, por parte dos usudrios.

a) Todas as afirmativas estdo corretas.

b) Somente as afirmativas |, Il e Il estdo corretas.

c) Somente as afirmativas Il, lll e IV estdo corretas.

d) Somente as afirmativas |, lll e IV estdo corretas.

Apds ler sobre a importéncia da compressdo de dados, coloque-se em lugar
de um consultor de empresas e explique como uma empresa de servico de

hospedagem de sitios poderia economizar dinheiro a partir da utilizagdo da
compressdo de dados.

Como vimos nesta aula, existem diversos algoritmos de compressdo de
dados, cada um com suas caracteristicas peculiares. Sobre esses algo-
ritmos de compressdo de dados, analise os itens a seguir e assinale a
alternativa correta.

I. O algoritmo de freqiéncia de caracteres recebe como entrada um vetor
de caracteres alfanuméricos e, como saida, devolve um vetor, também
de caracteres alfanuméricos, com excecdo do caractere ‘@', sempre
menor, no minimo em um caractere do que a seqiéncia de entrada.

II. O algoritmo de Huffman, entre os trés explicados na aula, é o que apre-
senta a saida com maior nivel de compresséo para todos os casos.

lll. O algoritmo LZW ¢ utilizado para comprimir qualquer tipo de arquivo,
diferentemente do algoritmo de frequiéncia de caracteres, que é indicado
para compressdo de sequéncia de caracteres alfabéticos e numéricos.

IV. O algoritmo de Huffman segue a mesma idéia do algoritmo de freqiéncia
de caracteres, porém utilizando-se de drvore binéria.

a) Somente as afirmativas | e Il e estdo corretas.

b) Somente as afirmativas | e lll estdo corretas.

c) Somente as afirmativas Il e lll estdo corretas.

d) Somente as afirmativas lll e IV estdo corretas.

Escreva um pequeno programa em Java, que possibilite a decodificacdo do
algoritmo de compressdo por freqiéncia de caracteres. Ele serd justamente

UNITINS « ANALISE E DESENVOLVIMENTO DE SISTEMAS « 3° PERIODO 99

AULA 6 « ESTRUTURA DE DADOS

o “caminho de volta” (descompressdo) do algoritmo “de ida” (compressdo).
Teste seu algoritmo com as entradas expostas nesta aula, bem como outras
entradas de sua preferéncia.

Comentario das atividades)

Na atividade um, a resposta correta é a letra (a). Todas as afirmativas
estdo de acordo com os assuntos explanados em aula e estudados em materiais
referenciados.

Na atividade dois, vocé deve ter pensado como um consultor de tecnologia
da informagdo e focado em uma empresa de hospedagem de sitios. Assim, para
a empresa economizar dinheiro, a partir do uso da compactagdo, ela poderia
manter os arquivos de usudrios compactados, economizando espaco em disco,
diminuindo o gasto com aquisicdo de novas unidades de disco rigido ou de fitas

de backup.

Na atividade trés, a resposta correta é a letra (d). A afirmativa (I) erra ao
afirmar que a saida é um vetor sempre menor que o de entrada: no caso da
entrada ndo tem nenhuma repeticdo de caracteres adjacentes, a string resul-
tante serd igual & string de entrada. A alternativa (Il) também esté errada, pois
o algoritmo LZW é o que oferece um maior nivel de compress@o, entre os trés
algoritmos expostos em aula. As demais alternativas estdo de acordo com os
assuntos explanados em aula e estudados em materiais referenciados.

Finalmente, na atividade quatro, vocé deve ter desenvolvido um aplicativo
em Java para decodificacdo de seqiéncias de caracteres (strings) compactadas
com o algoritmo de compressdo por freqiéncia de caracteres. Vocé deve ter
dado uma olhada na fungdo public static String compactarSequencia(String
sequencia) exposta nesta aula e até a copiado no programa feito, para poder
gerar saidas codificadas que pudessem ser copiadas, servindo de teste para a
funcdo de decodificagdo que vocé criou. A funcdo deu certo, uma vez que a
saida que ela retorna, mostrada em tela, por exemplo, pela mensagem System.
out.println(resultado), é a seqiiéncia de caracteres original, que servira de entrada
para a funcdo de compactagdo.

Se vocé respondeu corretamente a essas questdes, atingiu os dois objetivos
propostos para esta aula: compreender a importancia da compressdo de dados

e conhecer algoritmos de compressdo de dados (freqiéncia de caracteres,
Huffman e LZW).

Referéncias ‘

SZWARCEFITER, Jayme Luiz; MARKENZON, Lilian. Estruturas de dados e seus
algoritmos. Rio de Janeiro: LTC, 1994.

100 3° PERIODO « ANALISE E DESENVOLVIMENTO DE SISTEMAS « UNITINS

AULA 6 « ESTRUTURA DE DADOS

TENENBAUM, Aaron M.; LANGSAN, Yedidyah; AUGENSTEIN, Moshe J.
Estrutura de dados usando C. SGo Paulo: Makron Books, 1995.

UCPEL. Compresséo — LZW (Lempel-Ziv-Welch). Disponivel em: <http://atlas.
ucpel.tche.br/~tst/lzw.html>. Acesso em: 17 set. 2008.

Na proxima aula '

Vocé conhecerd os grafos. Um grafo é uma estrutura de dados com capaci-
dade de representar problemas complexos e resolvé-los com algoritmos relativa-
mente simples. Que venham os grafos!

Anotacdes

UNITINS « ANALISE E DESENVOLVIMENTO DE SISTEMAS « 3° PERIODO 101

AULA 6 « ESTRUTURA DE DADOS

1 02 3° PERIODO « ANALISE E DESENVOLVIMENTO DE SISTEMAS « UNITINS

